
Advancements in Satellite 
and AI Technologies for 

Methane Detection 
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Introducing MethaneDART: A Scalable Platform for Methane 
Intelligence



Topics Covered

1. Introduction – The MethaneDART project and team
2. Scaling Methane Detection for Proactive Leak Mitigation
3. Addressing Methane Monitoring's Big Problem
4. MethaneDART's Core Technology
5. MethaneDART Modeling Results
6. Web Application Prototype
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MethaneDART: The Methane Emissions 
Detection, Analysis, and Resource 
Management Tool

• Funded through Phase-1 
SBIR-STTR NOAA Grant

• 6-month project
• Phase-II proposal submitted 

(2 years of funding)

Carbon

Solutions
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Scaling Methane Detection for 
Proactive Leak Mitigation
Why MethaneDART?

Because detection is only useful if it leads to action.
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The Market Demand for Satellite-Based 
Methane Leak Detection
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What’s driving demand for methane detection?



We conducted interviews with operators, 
conservation groups, and regulators. Here’s what we 
consistently heard

What They Need
in a methane monitoring system
• Fast detection times to meet 

compliance deadlines
• High spatial resolution for 

pinpointing leaks
• Workflow integration with 

existing GIS and leak response 
tools

• Minimize false positive to avoid 
unnecessary field deployments

• Cost-effectiveness
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Why It’s Hard
• Infrastructure is often in 

remote locations & imaging the 
entire Earth takes a long time!

• Often numerous operators 
occupy the same field in close 
proximity

• Higher spatial resolution 
comes at the expense of 
longer revisit times

• High-accuracy satellite 
imagery is very expensive

http://www.fguardians.org/
https://commons.m.wikimedia.org/wiki/User:RG72


Regulatory Landscape –
The Pressures Operators Face
• Operators must comply with a rapidly evolving 

methane regulatory landscape
• State Regulations – Stricter methane limits in 

Colorado, New Mexico, California
• Risk of Lost Market Access – EU markets 

require a low methane intensity (and therefore 
thorough monitoring)

• EPA NSPS (New Source Performance 
Standards) – Leak monitoring and repair 
mandates

• EPA WEC (Waste Emissions Charge) paused*, 
but future regulation remains a focus

8
photo credits: dvidshub.net and Ken Hodge

https://nara.getarchive.net/media/fuel-storage-facility-inspection-230ab8
https://www.flickr.com/people/40132991@N07


Addressing Methane 
Monitoring’s Big Problems  
A Scalable, cross-sector approach is needed
to fill the gap
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Where Today’s Tools Excel – and
Where Gaps Remain
• Tradeoffs: Existing methane detection 

solutions face tradeoffs in speed, 
cost, and spatial coverage.
• Fixed sensors: Enable continuous 

monitoring at specific points, but 
widespread deployment across pipeline 
networks can be cost-prohibitive.

• Aerial & drone surveys: Provide high-
resolution data, though they can be cost-
intensive and episodic in coverage.

• CarbonMapper (3/30-day latency): Offers 
valuable regional insights, but latency may 
limit operational responsiveness.
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MethaneDART: Accelerating Detection, 
Enabling Action
• Rapid, 1-day latency* in detection supports timely field response
• Targeting high-resolution, leak-level precision, enhance accuracy
• Workflow-ready design integrates seamlessly with GIS platforms
• Phased rollout: early adopters (2025–2027), commercial launch 

(2027), global scaling (2028+)
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Why Now?
Regulation of methane is on the rise
Public visibility is on the rise
Monitoring tech is ready and capable
Stakeholders are aligned
→ MethaneDART is built to meet this opportunity.
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MethaneDART’s Core 
Technology
Applied AI + Remote Sensing for Methane
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The Satellite Data Landscape for Methane 
Detection
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Dataset Spatial 

Resolution

Return Period SWIR Bands Detection 

Threshold 

CH4

Coverage Availability

TROPOMI 

Sentinel-5 

precursor

5 km 16 days 2 bands 4200 (kg/hr) Near-polar Public

Greenhouse gas 

observing satellite 

(GOSAT)

0.5-10.5 km 3 days 3 bands 7100 (kg/hr) Global Public

GOSAT-2 0.5-10.5 km 6 days 5 bands 4000 (kg/hr) Global Public

MethaneSAT .1 x .4 km 3-4 days Direct CH4 product 2 (ppb) Global Public

GHGSAT 25 m 14 days Direct CH4 product 1000 (kg/hr) Global Proprietary (may be 

available through 

ESA)

Prisma 30 m 29 days

(task based)

Hyperspectral (9 nm) 500-2000 kg/hr Global Public

EnMAP 30 m 27 days Hyperspectral (10 nm) 100-500 kg/hr Global Public (Scientific 

Use)

Tanager-1 30 m 7 days Hyperspectral (5 nm) 90 kg/hr Global Private (paid 

product)

Landsat 8 30 m 16 days 2 bands 1000 kg/hr Global Public

WorldView-3 30 cm 1-3 days (task based) 8 bands <100 kg/hr Global Private (paid 

product)

EMIT 62 m ~5 days (irregular orbit, 

ISS)

Hyperspectral (7.4 nm) 200 kg/hr Global Public

Sentinel-2 60 m 3-5 days 3 Bands 1000 kg/hr Global Public
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Satellite Data: Sentinel-2 and EMIT
EMIT:

• 285 Spectral Bands (we use 26 bands)

• 60 meter spatial resolution

• ~3 day revisit time (irregular

Sentinel-2:

• 13 Spectral Bands (we use 3 

important for CH4)

• 60 meter spatial resolution

• 2-5 day revisit time depending on 

latitude



Inferring Plume Characteristics
• Beer Lambert Law

• Knowing the spectral 
characteristics of CH4 allows 
us to simulate how CH4 plumes 
will appear in satellite imagery  
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Gaussian Plume Model
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• Plumes simulated using a wide range of conditions

• Wind Speed

• Atmospheric Stability

• Spread Coefficient

• Radiation

• 54 individual plumes created

• Wind Direction (random)

• Emissions Rate (100 - 70,000 kg/hr)



Embedding the 
Plumes
• Plume is placed in a random location and 

random orientation (wind direction)

• Use Beer Lambert law to calculate 

additional absorption from CH4

• Only use locations where we expect no 

other CH4 emissions

• ~300 images collected

• Create a training dataset of 2000 

embedding plume images



UNET Architecture

• UNET’s are popular for image identifications.

• Convolution layers uses multiple filter/kernels 
to slide over an image to create a feature map 
output.

• UNET applications use an encoder/decoder 
architecture to identify feature and then 
reconstruct an image using those features
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UNET Architecture



UNET Neural Network
Output:

 Inferred CH4 Plume Concentration, 

Segmentation, & Location 

Machine Learning & Model Inversion
Input:

EMIT Satellite Data

 [128 x 128 x 28 bands] 

x ~2000 images



MethaneDART Modeling 
Results
Model Performance and Real-World Applications
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Machine Learning Results:
Plume Segmentation
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Machine Learning Results:
Plume Segmentation
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Machine Learning Results: Methane Concentration



Machine Learning Results: 
Methane Concentrations



Machine 
Learning Results



Machine 
Learning Results

Emissions Rate



Machine Learning Results



• Ran the model on known plume 
locations from reported datasets 
and publicly reported plumes

• Identified ~1260 plumes
• Heuristics and thresholding for 

plume definitions, extents, etc.
• Validation require real world 

point source emissions
• Controlled Release Experiments
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Validating Model Results in the Real World



Facility 

Database

Neural Network 

Models

REST 

API

Satellite 

API

MethaneDART Backend MethaneDART Frontend

Ancillary Data: 

NEI, CO2ncord, 
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Web Hosted GUI:

https://apps.carbonsolutionsllc.

com/methanedart/

https://apps.carbonsolutionsllc.com/methanedart/
https://apps.carbonsolutionsllc.com/methanedart/


Thank You!

Carl Talsma, carl.talsma@carbonsolutionsllc.com
BJ Brooks, bjorn.brooks@carbonsolutionsllc.com
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