Advancements in Satellite and AI Technologies for Methane Detection

Introducing MethaneDART: A Scalable Platform for Methane Intelligence

Carl Talsma & Dr. BJ Brooks

Topics Covered

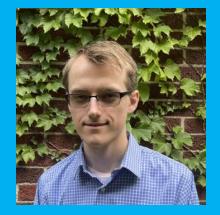
- 1. Introduction The MethaneDART project and team
- 2. Scaling Methane Detection for Proactive Leak Mitigation
- 3. Addressing Methane Monitoring's Big Problem
- 4. MethaneDART's Core Technology
- 5. MethaneDART Modeling Results
- 6. Web Application Prototype

MethaneDART: The Methane Emissions Detection, Analysis, and Resource Management Tool

We created MethaneDART to meet the growing need for faster methane detection that accelerates leak response, keeps natural gas out of the atmosphere & saves operators time, money.

- Funded through Phase-1 SBIR-STTR NOAA Grant
- 6-month project
- Phase-II proposal submitted (2 years of funding)

The Team



on Prehn UI/UX

Software
 Development

Carl Talsma

- Pl, Project
 - Management
- Al / Machine Learning

Yunha Lee, PhD

- Physical Plume
 Modeling
- Al / Machine Learning

- Al / Machine Learning
- Plume
 Modeling

BJ Brooks, PhD

- Satellite Imagery
- Commercializa tion / Business

Daniel Rodriguez Atmospheric

•

- Chemistry
- Market Research

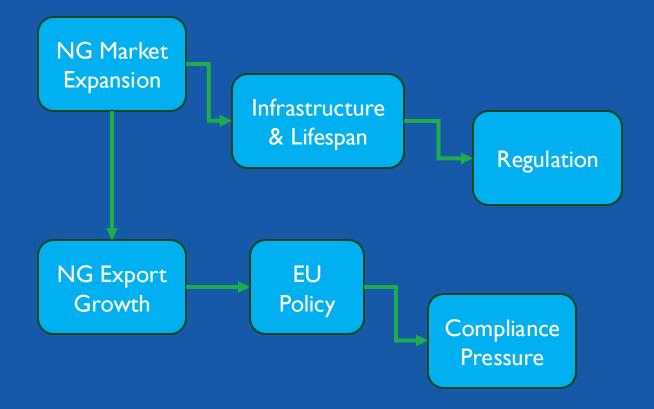
Scaling Methane Detection for Proactive Leak Mitigation

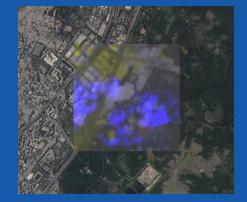
Why MethaneDART?

Because detection is only useful if it leads to action.

The Market Demand for Satellite-Based Methane Leak Detection

What's driving demand for methane detection?





We conducted interviews with operators, conservation groups, and regulators. Here's what we consistently heard

What They Need

in a methane monitoring system

- Fast detection times to meet compliance deadlines
- High spatial resolution for **pinpointing leaks**
- Workflow **integration** with existing GIS and leak response tools
- Minimize false positive to avoid unnecessary field deployments
- Cost-effectiveness

ARBON

Why It's Hard

- Infrastructure is often in remote locations & imaging the entire Earth takes a long time!
- Often numerous operators occupy the same field in close proximity
- Higher spatial resolution comes at the expense of longer revisit times
- High-accuracy satellite imagery is very **expensive**

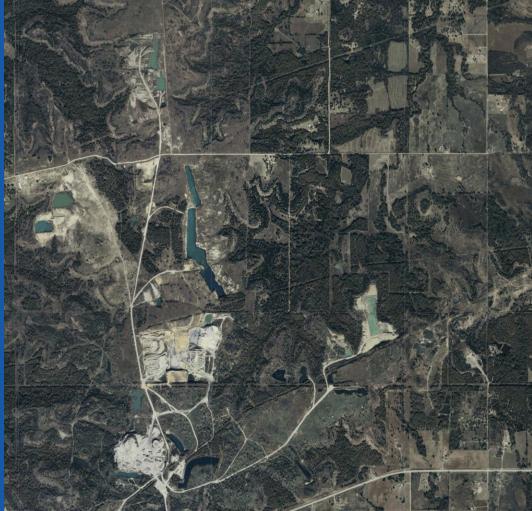
Regulatory Landscape – The Pressures Operators Face

- Operators must comply with a rapidly evolving methane regulatory landscape
- State Regulations Stricter methane limits in Colorado, New Mexico, California
- Risk of Lost Market Access EU markets require a low methane intensity (and therefore thorough monitoring)
- EPA NSPS (New Source Performance Standards) – Leak monitoring and repair mandates
- EPA WEC (Waste Emissions Charge) paused*, but future regulation remains a focus

Addressing Methane Monitoring's Big Problems A Scalable, cross-sector approach is needed to fill the gap

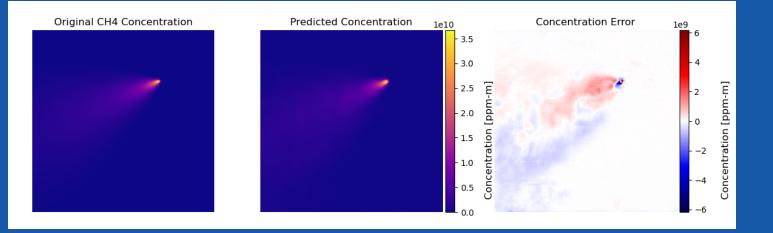
Where Today's Tools Excel – and Where Gaps Remain

- Tradeoffs: Existing methane detection solutions face tradeoffs in speed, cost, and spatial coverage.
 - Fixed sensors: Enable continuous monitoring at specific points, but widespread deployment across pipeline networks can be cost-prohibitive.
 - Aerial & drone surveys: Provide highresolution data, though they can be **costintensive** and episodic in coverage.
 - CarbonMapper (3/30-day **latency**): Offers valuable regional insights, but latency may limit operational responsiveness.



MethaneDART: Accelerating Detection, Enabling Action

- Rapid, 1-day latency* in detection supports timely field response
- Targeting high-resolution, leak-level precision, enhance accuracy
- Workflow-ready design integrates seamlessly with GIS platforms
- **Phased rollout**: early adopters (2025–2027), commercial launch (2027), global scaling (2028+)



Why Now?

Regulation of methane is on the rise

Public visibility is on the rise

Monitoring tech is ready and capable

Stakeholders are aligned

 \rightarrow MethaneDART is built to meet this opportunity.

MethaneDART's Core Technology

Applied AI + Remote Sensing for Methane

The Satellite Data Landscape for Methane Detection

Dataset	Spatial Resolution	Return Period	SWIR Bands	Detection Threshold CH ₄	Coverage	Availability
TROPOMI Sentinel-5 precursor	5 km	16 days	2 bands	4200 (kg/hr)	Near-polar	Public
Greenhouse gas observing satellite (GOSAT)	0.5-10.5 km	3 days	3 bands	7100 (kg/hr)	Global	Public
GOSAT-2	0.5-10.5 km	6 days	5 bands	4000 (kg/hr)	Global	Public
MethaneSAT	.1 x .4 km	3-4 days	Direct CH ₄ product	2 (ppb)	Global	Public
GHGSAT	25 m	14 days	Direct CH ₄ product	1000 (kg/hr)	Global	Proprietary (may be available through ESA)
Prisma	30 m	29 days (task based)	Hyperspectral (9 nm)	500-2000 kg/hr	Global	Public
EnMAP	30 m	27 days	Hyperspectral (10 nm)	100-500 kg/hr	Global	Public (Scientific Use)
Tanager-1	30 m	7 days	Hyperspectral (5 nm)	90 kg/hr	Global	Private (paid product)
Landsat 8	30 m	16 days	2 bands	1000 kg/hr	Global	Public
WorldView-3	30 cm	1-3 days (task based)	8 bands	<100 kg/hr	Global	Private (paid product)
EMIT	62 m	~5 days (irregular orbit, ISS)	Hyperspectral (7.4 nm)	200 kg/hr	Global	Public
Sentinel-2	60 m	3-5 days	3 Bands	1000 kg/hr	Global	Public

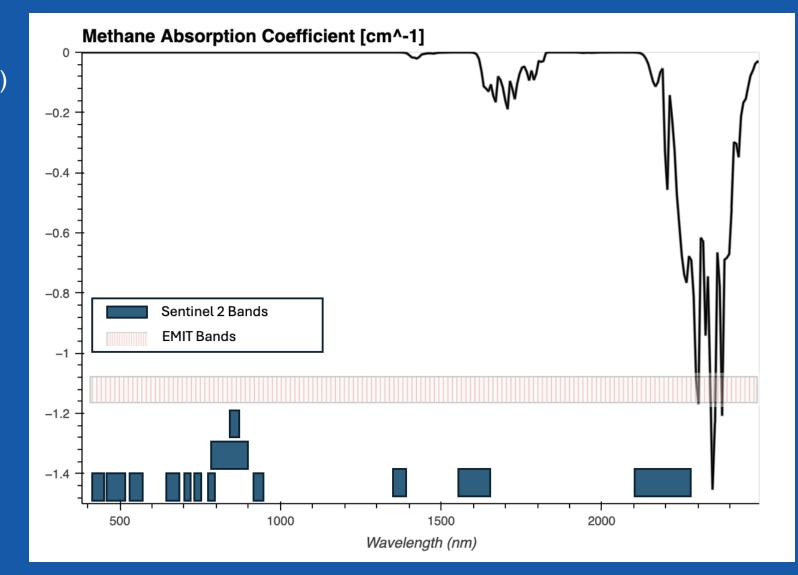
Satellite Data: Sentinel-2 and EMIT

EMIT:

- 285 Spectral Bands (we use 26 bands)
- 60 meter spatial resolution
- ~3 day revisit time (irregular

Sentinel-2:

- I3 Spectral Bands (we use 3 important for CH₄)
- 60 meter spatial resolution
- 2-5 day revisit time depending on latitude

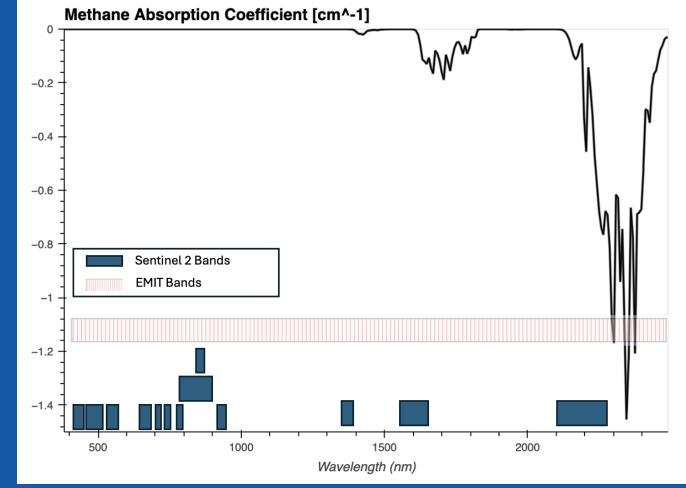


Inferring Plume Characteristics

• Beer Lambert Law

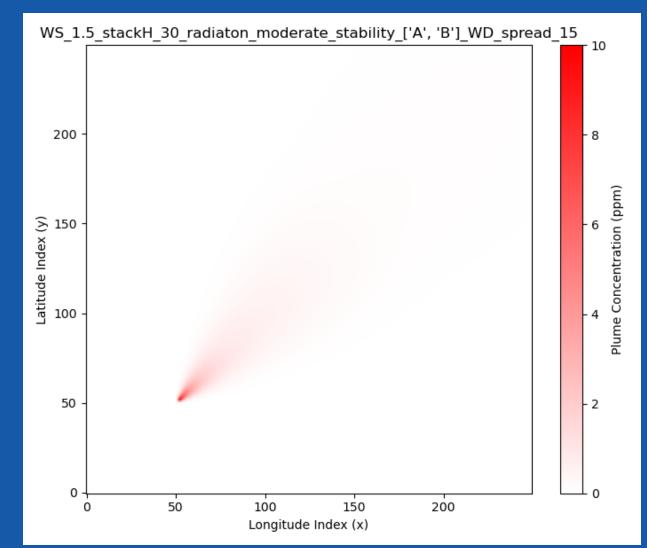
	$A = \varepsilon c l$	
Α	Absorbance	
ε	Molar absorption coefficient	M ⁻¹ cm ⁻¹
С	Molar concentration	Μ
l	optical path length	cm

 Knowing the spectral characteristics of CH₄ allows us to simulate how CH₄ plumes will appear in satellite imagery



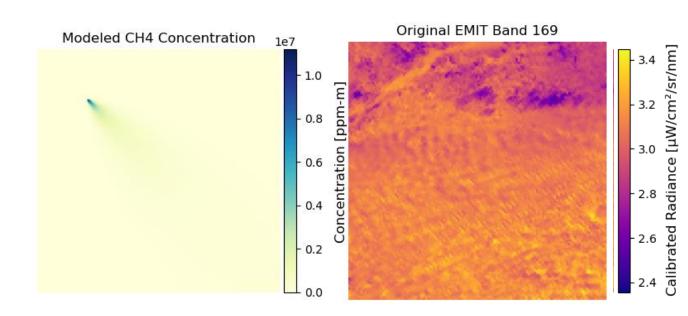
Gaussian Plume Model

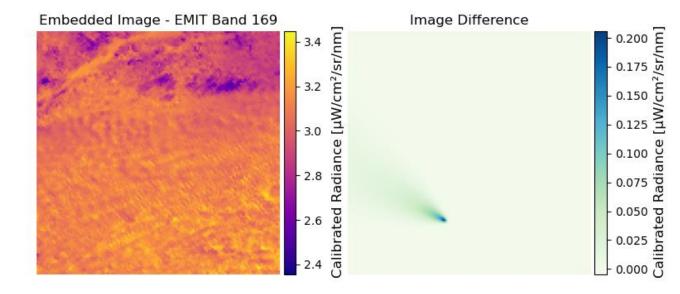
- Plumes simulated using a wide range of conditions
 - Wind Speed
 - Atmospheric Stability
 - Spread Coefficient
 - Radiation
- 54 individual plumes created
- Wind Direction (random)
- Emissions Rate (100 70,000 kg/hr)



Embedding the Plumes

- Plume is placed in a random location and random orientation (wind direction)
- Use Beer Lambert law to calculate additional absorption from CH₄
- Only use locations where we expect no other CH₄ emissions
- ~300 images collected
- Create a training dataset of 2000 embedding plume images

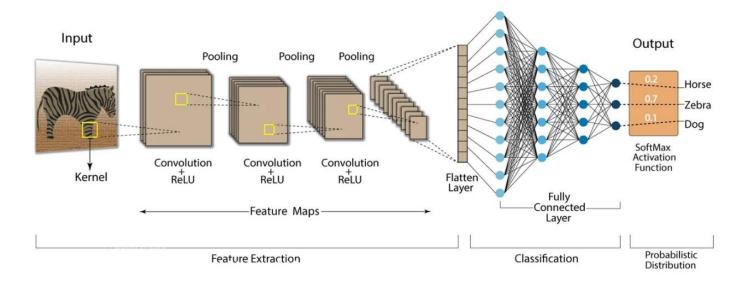


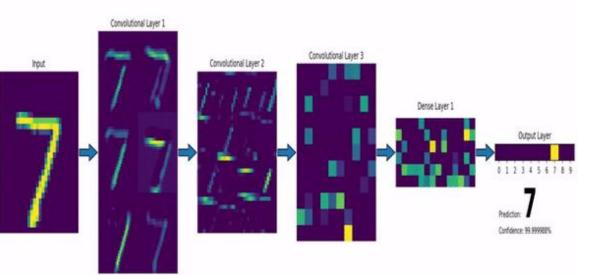


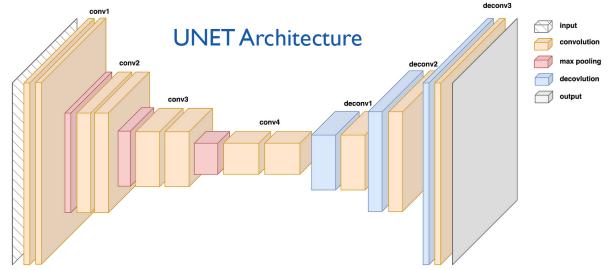
Convolution Neural Network (CNN)

UNET Architecture

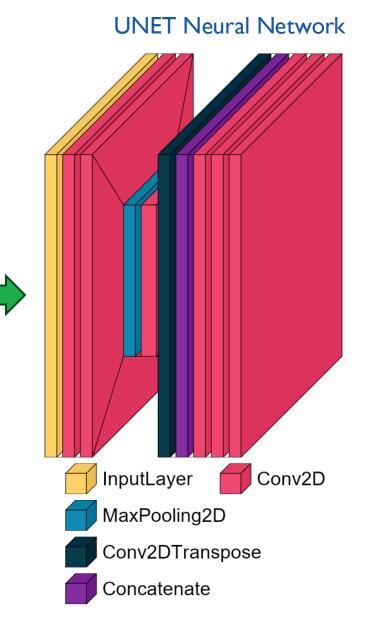
- UNET's are popular for image identifications.
- Convolution layers uses multiple filter/kernels to slide over an image to create a feature map output.
- UNET applications use an encoder/decoder architecture to identify feature and then reconstruct an image using those features







Machine Learning & Model Inversion

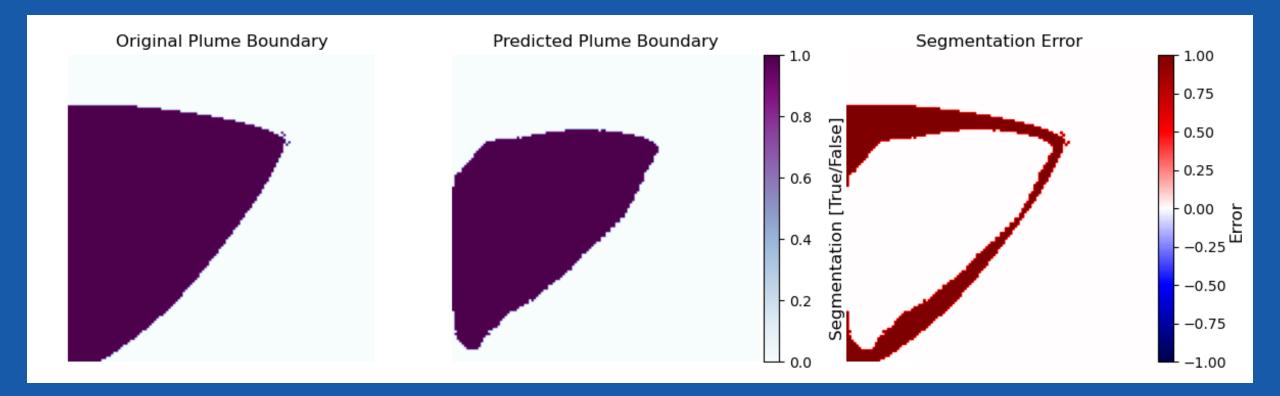


Output: Inferred CH₄ Plume Concentration, Segmentation, & Location

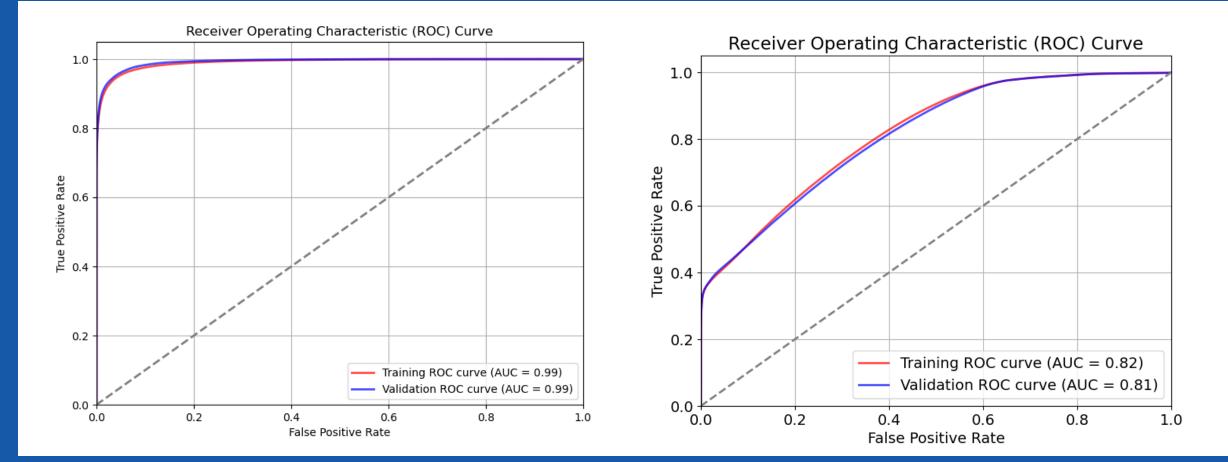
MethaneDART Modeling Results

Model Performance and Real-World Applications

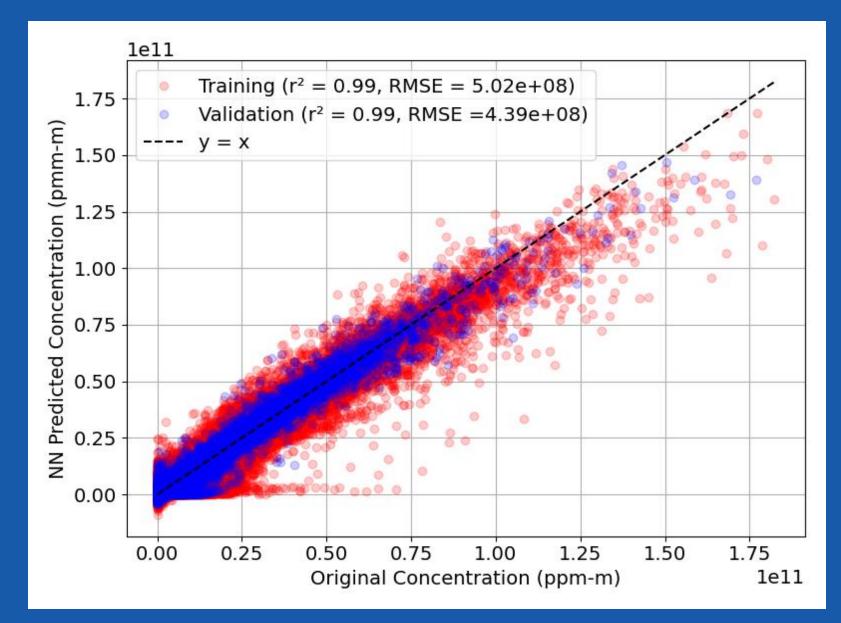
Machine Learning Results: Plume Segmentation



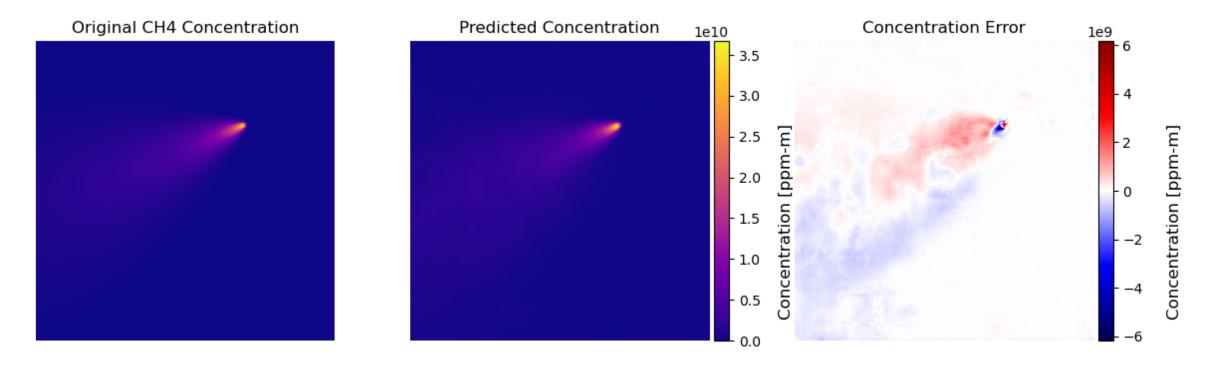
Machine Learning Results: Plume Segmentation



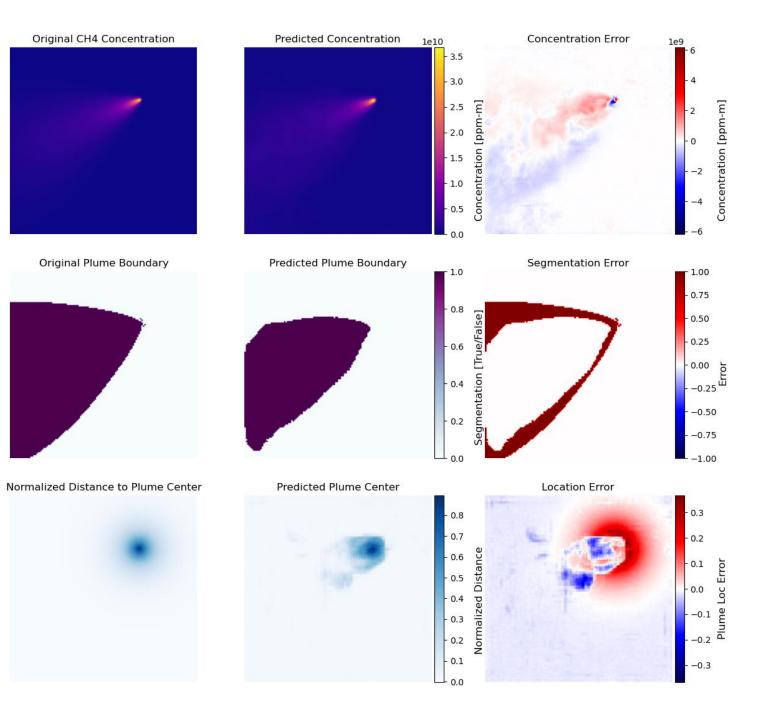
Machine Learning Results: Methane Concentration



Machine Learning Results: Methane Concentrations

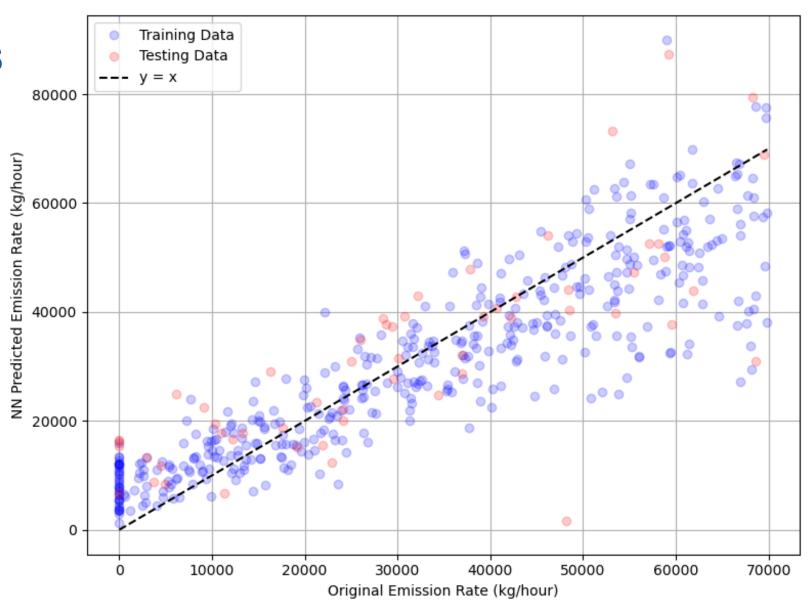


Machine Learning Result:

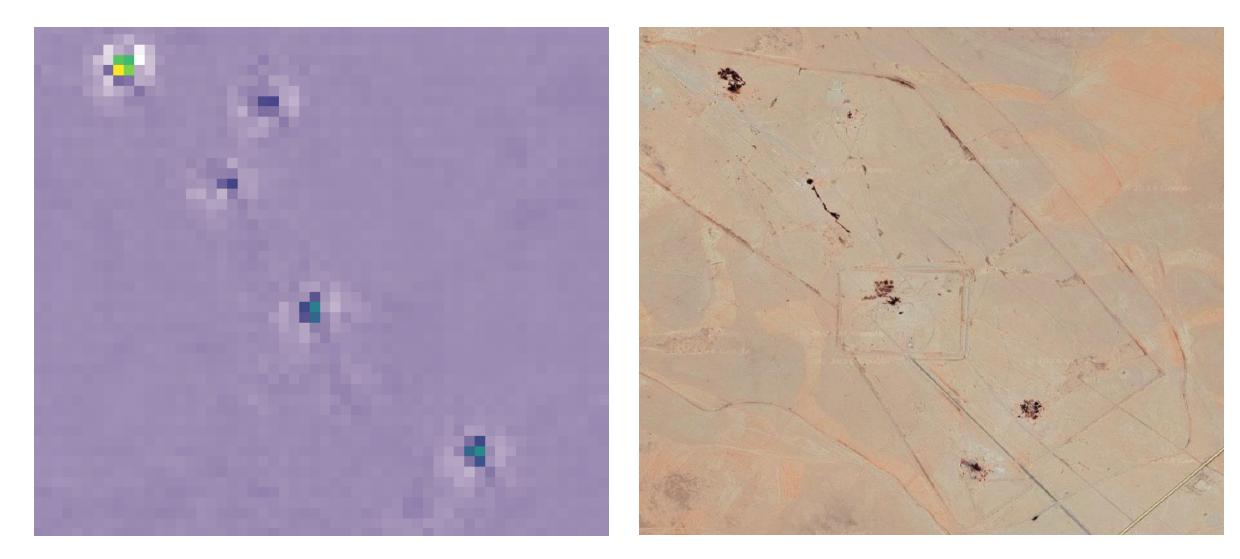


Machine Learning Results

Emissions Rate

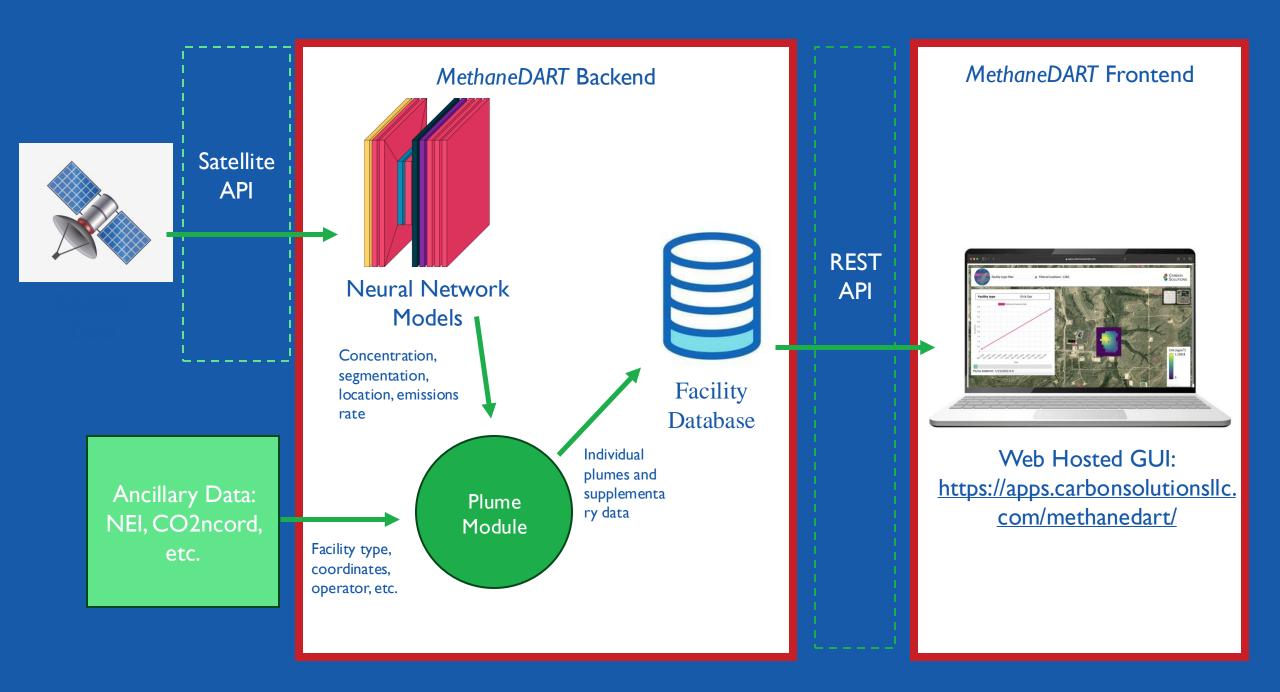


Machine Learning Results



Validating Model Results in the Real World

- Ran the model on known plume locations from reported datasets and publicly reported plumes
- Identified ~1260 plumes
- Heuristics and thresholding for plume definitions, extents, etc.
- Validation require real world point source emissions
- Controlled Release Experiments



Carl Talsma, carl.talsma@carbonsolutionsllc.com BJ Brooks, bjorn.brooks@carbonsolutionsllc.com

