Designing a Carbon-Negative Power Plant: Engineering, Infrastructure, and Storage Considerations

Kevin Ellett, Kat Sale and David Tu

Carbon Solutions Webinar, February 26th, 2025

Support site selection and CO_2 disposition plan for the world's first carbon negative power plant that runs on biomass and coal mine waste fuel

Iterative LCA to guide engineering decisions for carbon neutral/ negative operation.

Objectives

Design Development and System Integration Design Study for an Advanced Pressurized Fluidized Bed Combustion Power Plant with Carbon Capture

ACKNOWLEDGEMENTS

- USDOE 21st Century Power Plant Program
 - Award # DE-FE0031998
- R&D Partners: CONSOL Energy (Lead), Worley, Battelle
- Carbon Solutions Team Members
 - SimCCS^{PRO} Model Development and Applications
 - Richard Middleton, Carl Talsma, Erin Middleton, Jonathan Ogland-Hand
 - Life Cycle Assessment
 - Andrew Harrison, Marcos Miranda and Tracey Ziev

Learn more at CCUS 2025! March 3-5, Houston, TX

https://ccusevent.org/2025

Webinar Outline

- Iterative Life Cycle Assessment
 - Kat Sale
- Integrated CCS Infrastructure
 - Kevin Ellett
- Alternative Options for Carbon Storage
 - David Tu

Life Cycle Assessment (LCA)

- Iterative process to quantify the impacts of a product or process during its life cycle
- Interpretation at each step
- ISO 14040 Compliant

LCA: Goal

- Intended Audience: CONSOL Energy, stakeholders, general public
- Category of interest: 100-year global warming potential
- Functional Unit: 1 kWh electricity
- Develop a model of a co-fired biomass, waste coal, and virgin coal power facility with carbon capture and storage, that evaluates the 100-yr global warming potential from generating 1 kWh of electricity under different system designs, for use by CONSOL Energy.
- What biomass percentage is needed to achieve carbon neutrality?

LCA: Scope

- Cradle-to-gate analysis for 1 kWh of electricity produced, including:
 - Production and transport of major raw materials
 - On-site emissions
 - Construction
 - Transport and sequestration of CO₂
- Not included: plant decommissioning & demolition → negligible impact
- Evaluated using openLCA 2.2 software, TRACI 2.1 impact assessment, GHG-100 CO₂e
- Data Sources: Industry Partner → NETL 45Q LCI & CO2U Database → GREET 2023, 1.3.0

LCA: System Diagram

Figure 1. System boundary of the proposed 21 CPP BP2 design

LCA: CO₂ Balance

Key Model Parameters

Image licensed under creative commons: CCBY-NC

Image licensed under creative commons: CCBY-NC

	CARBON
V	SOLUTIONS

Coal Blend	Virgin & Beneficiated Waste Coal
Coal Blend Energy Content, wet	9,961 Btu/lb
Coal Blend Moisture Content	26.5 wt%
Percentage Waste Coal	50%
Biomass Type	Forest Residue
Biomass Energy Content,	wet 5,030 Btu/lb
Biomass Moisture Conte	nt 30 wt%
Biomass in Feed (Energy-b	asis) 20%
Capture System	n and Transport
CO ₂ Capture Rate	97%
Number of CO ₂ Compress	ors 2
CO ₂ Pipeline Length	47 miles
Seque	stration
Number of Wells	11
Number of Well Head Compr	essors 1
Formation Leakage	0.5%

Image licensed under creative commons: CCBY-SA

https://doi.org/10.1016/J.ENERGY.2012.07.007

Model Output and Sensitivity Highlights

- Coal power generally produces $\sim 1000 \text{ g CO}_2 \text{e/kWh}$
- Biomass carbon uptake makes plant's overall GWP negative
 - At least **14% biomass fraction** could achieve carbon neutrality
- Construction of the CO₂ pipeline and its operation have nonnegligible effects
 - NETL CO2U transport and storage process: 17.6 g CO₂e/kWh

Process Impact Contributions at Baseline Plant Design

Variable	Value [g CO ₂ e / kWh]
Biomass Carbon Uptake	-197
Virgin Coal Supply	67.1
Lime, Limestone, Amine, PAC Supply	4.2
MaterialTransportation	12.5
On-Site Emissions (Combustion)	36.6
Plant Construction	0.8
CO ₂ Transport, Storage, and Construction	18.7
TOTAL	-57.3

Comparison to Other LCAs

LCA Conclusions

- A cradle-to-gate impact of -57.3 gCO₂e/kWh was calculated for the proposed 21CPP system
- 14% biomass must be combusted on an energy basis for this system to reach expected carbon neutrality
- Integrating LCA into a design process can improve overall system design by identifying key trade-offs and optimizing environmental performance

CO₂ **DISPOSITION PLAN INTEGRATED CCS INFRASTRUCTURE FOR PLANT SITING AND REGIONAL INTEGRATION**

- SimCCS^{PRO} (system analysis)
 - Decision support across the CCS value chain.
 - Sub-models for CO₂ capture, transport, & storage.
- CO₂NCORD (capture)
 - Dynamic, customizable CO₂ capture database.
 - 10,000+ sources.
- CostMAPPRO (transport)
 - Advanced, multiscale, multiattribute pipeline routing.
- SCO₂T^{PRO} (storage)
 - World's most advanced tool for dynamic CO₂ storage & costs.

CO₂ DISPOSITION PLAN INTEGRATED CCS INFRASTRUCTURE FOR PLANT SITING AND REGIONAL INTEGRATION

CO₂NCORD SOFTWARE APPLICATION

Estimated Capture Cost (\$/tCO₂)

COSTMAP AND SIMCCS^{PRO} **SOFTWARE APPLICATIONS** Model results indicate opportunity to reduce transport costs by 50%+ via shared pipeline infrastructure

SCO₂T^{PRO} SOFTWARE APPLICATION

ESTIMATED COST OF STORAGE IN DEEP SALINE FORMATIONS IS RELATIVELY HIGH

Figure 8: Detailed assessment of Lockport Dol. using available well data indicated that storage resources are likely limited to thinner reservoir intervals than originally estimated from regional characterization data.

Uncertainty in storage costs have significant impact on 21CPP's estimated project revenue 21CPP Estimated Revenue 20 year project, 3Mtpa, higher storage cost estimates

Alternative Storage Options: Conversion of Marcellus production wells into CO₂ storage wells

- Prior work suggests tens of Gigatonnes of potential CO₂ storage capacity in depleted Marcellus Shale gas wells (*Tao and Clarens,* 2013; Godec et al., 2013; Bielicki et al., 2018).
- Storage cost expected to be cheaper than saline storage
 - Existing well infrastructure.
 - Existing fracked reservoirs at reduced pressure.
 - Pipeline rights-of-way.
 - Storage security from adsorption.
 - Smaller AOR for monitoring.
- Wells with 10+ years of production history may be more valuable for CO₂ injection than from continued production

Unconventional Wells Drilled by Year

Numerical Modeling and Reservoir Simulation (NMRS)

• What is NMRS?

NMRS is essential for **assessing, planning, monitoring**, and **evaluating** commercial-scale CCS projects. It originated in the oil and gas industry for reservoir development and optimization.

Numerical Modeling and Reservoir Simulation (NMRS)

• What can NMRS answer?

CARBON SOLUTIONS STORAGE **potential**.

Numerical Modeling and Reservoir Simulation (NMRS)

• Why is the NMRS study necessary?

Enhanced Confidence:

Optimize the best storage site and reservoir with accurate geologic data

Unlimited Scenarios:

Help create operational plans tailored to the company's financial and development outlook

Meet the regulatory requirements: Help create operational plans tailored to the company's financial and development outlook

- The AoR for a Class VI injection project must be delineated using a computational model that accounts for the physical and chemical properties of all phases of the injected carbon dioxide [40 CFR 146.84(a)].
- The Class VI Rule requires that the AoR be delineated using models that include multiphase flow [40 CFR 146.84(a)]

https://www.epa.gov/uic/final-class-vi-guidancedocuments

Evaluating potential for CO₂ storage via Marcellus well conversion -RIDGE ROAD Horizontal Well Cluster Overview

API_UWI	WellName	WellStatus	WellboreType	FirstProdDate	Latitude	Longitude	TVD_FT	MD_FT	LastProdMonth
37-059-26264	RIDGE ROAD 7H	PRODUCING	MULTILATERAL	7/1/2014	39.89594	-80.1008	8047	15020	8/1/2024
37-059-25936	RIDGE ROAD 1H	PRODUCING	MULTILATERAL	12/1/2013	39.89585	-80.1007	8017	14768	8/1/2024
37-059-26263	RIDGE ROAD 6H	INACTIVE PRODUCER	MULTILATERAL	7/1/2014	39.89596	-80.1008	8063	14953	6/1/2017
37-059-26262	RIDGE ROAD 5H	INACTIVE PRODUCER	MULTILATERAL	8/1/2014	39.89598	-80.1007	8060	16020	6/1/2017
37-059-27080	RIDGE ROAD 10H	PRODUCING	SINGLE BORE	9/1/2017	39.89597	-80.1009	8123	16295	8/1/2024
37-059-27079	RIDGE ROAD 9H	PRODUCING	SINGLE BORE	9/1/2017	39.89599	-80.1008	8120	16526	8/1/2024
37-059-27077	RIDGE ROAD 3H	PRODUCING	SINGLE BORE	9/1/2017	39.89604	-80.1007	8175	17739	8/1/2024
37-059-27078	RIDGE ROAD 4H	PRODUCING	SINGLE BORE	9/1/2017	39.89601	-80.1008	8123	16280	8/1/2024

CARBON SOLUTIONS

 NW wells are comp. btw. 2014 – 2015
 SE wells are comp. btw. 2017 - 2018

CARBON SOLUTIONS *Ridge Road 1,5,6,7 are sampled to construct the cluster model

Model Set up

CARBON SOLUTIONS

Static Properties	
Aerial Dimension	0.75 x 1.57 mi. sq.
Grid Cells (I, j, k)	163 x 384 x 10
Total number of grid cells	625,920
Avg grid size	50 ft x 50 ft
Marcellus Top	-6552 ft (MSL)
Marcellus Base	-6660 ft (MSL)
Avg thickness	177 ft
Matrix Properties	
Porosity	0.0425
Porosity Permeability i, j	0.0425 0.00015 mD [150 nD]
Porosity Permeability i, j Permeability k	0.0425 0.00015 mD [150 nD] 0.00015 mD [150 nD]
Porosity Permeability i, j Permeability k Initial Conditions	0.0425 0.00015 mD [150 nD] 0.00015 mD [150 nD]
Porosity Permeability i, j Permeability k Initial Conditions Initial Saturation	0.0425 0.00015 mD [150 nD] 0.00015 mD [150 nD] 1.0 CH4
Porosity Permeability i, j Permeability k Initial Conditions Initial Saturation Irreducible water Sat.	0.0425 0.00015 mD [150 nD] 0.00015 mD [150 nD] 1.0 CH4 0.25
Porosity Permeability i, j Permeability k Initial Conditions Initial Saturation Irreducible water Sat. Reservoir Pressure	0.0425 0.00015 mD [150 nD] 0.00015 mD [150 nD] 1.0 CH4 0.25 5600 psi @ -6600 ft SSTVD

WRIDGE ROA

Field Production History

٠

MSEEL

CO2 Storage by well

Well Names	Heel, ft (MD)	Toe, ft (MD)	Lateral len., ft	Frac Stages	Frac. Den.	SRV, cu ft	CH4 Prod, MMSCF	CO2 Inj, Tonne	CH4 Prod, Mole	CO2 Inj, Mole	SRV*Prod
RIDGE ROAD 1	8,205	14,767	6,562	44	149	360,579,000	8,735	452,503	10,500,000,000	10,300,000,000	0.04
RIDGE ROAD 5	8,230	16,020	7,790	49	159	420,675,000	5,433	334,867	6,600,000,000	7,610,000,000	0.03
RIDGE ROAD 6	8,190	14,953	6,763	44	154	355,254,000	3,432	318,294	4,080,000,000	7,230,000,000	0.01
RIDGE ROAD 7	8,240	15,045	6,805	44	155	381,874,000	8,153	541,079	9,780,000,000	12,300,000,000	0.04
Total			27,920	181	154	1,518,382,000	25,753	1,646,743	30,960,000,000	37,440,000,000	0.12

Individual Well
 Cum. Injection

2050

2055

 Individual Well Cum. Injection

2050

2055

Marcellus Well Conversion

- CCS in Marcellus shale formations through depleted multi-stage fracked horizontal wells shows potential of mega-scale CO2 storage in cluster patterns
 - Model simulations indicate 0.5+ Mt per well, 3+ Mt per multi-well pad
- Majority of CO2 storage may be achieved by the early-stage injection
- **Strategic planning of converting** natural gas producers into injectors will maximize the economics by enhance CH4 production while sequestrating optimal amount of CO2.

Conclusions

- Integrating LCA into FEED studies can improve overall system design by identifying key trade-offs and optimizing environmental performance
- CONSOL's 21CPP project would be located in a region with favorable opportunities to reduce costs through shared infrastructure
- Cost of storage in deep saline formations is uncertain and likely relatively high but repurposing depleted Marcellus shale gas wells may be a viable option for 21CPP and the region

Q&A

Thanks for your attention...

Archive

Single Wellbore Model

Model Setup

Static Properties	
Aerial Dimension	0.25 x 1.35 sq mi
Grid Cells (I, j, k)	25 x 139 x 10
Total number of grid cells	34,750
Avg grid size	50 ft x 50 ft
Marcellus Top	-6552 ft (MSL)
Marcellus Base	-6660 ft (MSL)
Avg thickness	177 ft

Grid Properties and Initial Conditions

OLUTIONS

Matrix Properties			
Porosity	0.04		
Permeability i, j	0.00015 mD [150 nD]		
Permeability k	0.00015 mD [150 nD]		
Initial Conditions			
Initial Saturation	1.0 CH4		
Irreducible water Sat.	0.25		
Reservoir Pressure	5600 psi @ -6600 ft MSL		
W/G contact	-6750 ft MSL		
Adsorption			
$\omega_i = rac{\omega_{i, ext{max}}B_iy_{ig}p}{1+p\sum_j B_jy_{ig}}$	Bi = parameter for Langmuir isotherm relation ωi = moles of adsorbed component per unit mass or rock ωi,max = maximum moles of adsorbed component i per unit mass of rock p = pressure yig = molar fraction of adsorbed component i in the gas phase		
Langmuir isotherm in Fracture	0 1/psi 0 gmole / lb rock		
Langmuir isotherm in Matrix	0.001 1/psi 0.08 gmole / lb rock		
CARBON			

Fracture Properties	
Fracture Width	0.001 ft
Fracture Half Length	350 ft
Fracture Height	Through the Marcellus shale
Frac Permeability i, j	0.001 mD
Frac Permeability k	0.0001 mD
Frac Porosity	0.001
Total SRV	3.37e8 cuft

- Continue w/ 30yr CO2 Injection following CH4 production
- The injection rate is set to be controlled by max Reservoir frac. pres.
- The injection limit is set to replenish the initial reservoir avg. pres.

Cumulative Gas Mass SC

Key takeaways:

- Dynamic simulation shows in total, cumulatively 0.6 Mt-CO2 was injected over 30 years, in exchange for 8,153 MMSCF CH4.
- 80% stored volume was achieved by the first 5 years of injection.
- The main constraint is pressure built up by low-perm matrix.

Wellbore Properties	
Lateral Length (MD)	6635 ft
Stages of Fractures	44
Perforation Density	40 per stage
Cluster Density	150 ft per stage
Total SRV	3.37e8 cu ft

Key takeaways:

- Desorption of CH4 is expected following gas production as the res. pres. declines.
- The behavior of competition adoption of CO2/CH4 is simulated as the adsorbed CH4 further declined as CO2 injection started despite press. Increase.
- Indicating volumetric calculation of CO2 injection in shale formation can be estimated with improved accuracy.

www.carbonsolutionsllc.com

www.carbonsolutionsllc.com

